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The diffraction of a rarefaction wave by a corner 

By J. B. L. POWELL 
Department of Mathematics, University of Bristol 

(Received 1 August 1957) 

SUMMARY 
An investigation is made of the effect of a small disturbance 

on the flow in a complete rarefaction wave, for example, the flow 
produced by the rupture of a membrane originally separating a 
compressible gas from a vacuum. The perturbation arises from 
a rigid boundary slightly inclined to the direction of flow. The 
growth of the perturbed region is studied and the pressure field 
is calculated for diatomic gases. 

The nature of the expanding boundary of the perturbed region 
is investigated. Arguments are put forward which suggest that 
this boundary can be a weak shock in certain circumstances. 
A second shock may also appear in some cases, following the first 
and of greater strength. 

In  an appendix the solutions are extended to monatomic gases 
and to fluids with an adiabatic index of 2. The latter results are 
suitable for a comparison with hydraulic experiments. 

1.  INTRODUCTION 
The term ' complete rarefaction wave ' is the name given to the flow 

produced when a membrane separating a compressible gas from a vacuum 
is ruptured, or a piston is retracted at the so-called escape speed of the gas 
(see Courant & Friedrichs 1948, p. 105). If u1 is the particle velocity and 
c1 the speed of sound in the flow, then 

u1 = (1 - P2){(X/t> ~ co>, 
c1 = p."(X/t) + (1 - p2)co, 

P2 = (Y - l ) / ( Y  + 11, 

(1) 
(2) 
(3) 

where y is the adiabatic index and c, is the speed of sound in the undisturbed 
gas which previous to the time t = 0, when the membrane is removed, 
occupied the region X 2 0. 

At the head of the wave adjoining the undisturbed fluid, X = cot, 
and so by equations (1) and (2) zdl = 0, c, = c,,. The tail of the wave 
represents the limit of penetration into the vacuum where c1 = 0, and 
its position is given by 

A small perturbation on the flow in the rarefaction wave is produced 
by a rigid boundary slightly inclined to the direction of Bow. The boundary 
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The above conditions have been assumed in order to provide a 
tractable problem. In  fact, rarefaction waves occurring in practice are 
always incomplete, even under ideal conditions and solutions for such 
cases are discussed in $ 7 .  
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2. GENERAL SOLUTION OF THE BASIC EQUATIONS 

It may easily be shown that the velocity potential of the flow in the 
undisturbed rarefaction wave is 

If the velocity potential of the flow in the perturbed region is 

and squares and products of + and its derivatives are neglected, 4 satisfies 
the equation (Chester 1954) 

+(l - $)(c; t + X 2 t l -  2C,X). 

+( 1 - p y c ;  t f x 2 t - 1 -  ZC, X) + 4 

X 

d,, - a dx, = dcc, 

x = p*(X/c, t) + (1 - 11.2) 

5 = (1  - 2 p y Y  

where x, 7 and 5 are new variables given by 

ZX+(l-p2)c,t 7 = t L  

a = 2p2/( 1 - 211.7. and 

(4) 
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In the problem considered here, 4 may be further simplified by writing 
it in the form + = coC.f(x,Y), (7) 
where y = q/(q2 - [y. (8) 
Here the function f is non-dimensional and depends only on non-dimensional 
combinations of the variables x, q and 6. This is required because of the 
lack of a fundamental length or time scale in the data defining the problem. 
The variable y remains finite and real in the interior of the perturbed region 
for, as will appear later, q > 5 except at the tail of the rarefaction wave 
where 7 = c = 0. Since 7 > 0 it also follows that y 1. 

Substitution of (7) in equation (4) gives the equation 

Y(Y2 - W U l /  - QdY2 - l)fsl/ + 3YYU = 0, (9) 

j ,  = ( y 2 -  1 ) - 3 / 2 + p Y ) ,  (10) 
with the solution 

where + ( ~ l / ~ y )  is an arbitrary function of xl'"y. From equations (2) 
and (5), x = (cl/co) > 0 and hence x1Ia is real and positive. 

Beyond the head of the rarefaction wave, that is for X > cot ,  
Ii 2 0 or x 1 ,  y > 1, the gas is at rest. Thus 4 is identically zero 
for x > 1 ,  y >, 1. The same is true off, and hence by (10) +(xl'*y) = 0 
for xl'"y > 1. Thus to the present order of approximation no perturbation 
exists outside the boundary xl/ay = 1. Moreover inside this boundary 
x --f 0 as y + co and so, by continuity, it follows from equation (8) that 
v 2 - l 2  is of constant sign in the perturbed region. At the wall surface, 
5 = 0, so that in the perturbed region q > 5. This is in agreement with 
the assumption made earlier in this section. 

For xl/"y < 1, + is determined by the boundary condition at the 
wall surface. In a linearized form, the condition of zero normal velocity 
becomes 

the velocity along the wall surface being given to the first order by 
equation (1). Equations (11) are equivalent to 

a4 = -c,X(x- 1){6,+6,H(1 -$-x)}, (12) z 
where X is a constant defined by 

1 -$ 
$( 1 - 2 p y  ' A =  

and H ( x )  is the Heaviside unit function defined by 

H(x)=O x < 0 l  
H ( x ) =  1 x > 0 ] .  
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From equations (7) and (10) it follows that 

where the prime denotes the derivative of 4 and the lower limit in the 
integration is chosen so that &+/a< = 0 on the boundary xliay = 1. In 
their present form equations (12) and (15) combine to give $ as the solution 
of a Volterra integral equation of the first kind. It is, however, of a 
particularly simple form since by the transformations 

1 
Y 1  = - y2x21a ' 

x(y,) = iy3x3'" +'(xl'rny), 
it may be reduced to Abel's integral equation 

- h(x - l)x1'Jr(82 + 6, H( 1 -- p2 - x)' - x(rl) 
dy,. (18) 

This has the explicit solution (Bocher 1914, p. 10) 

whence we may obtain 

which together with equation (10) gives the complete solution for the 
region x1'Ey < 1. 

3 .  THE NATURE OF THE BOUNDARIES WHEN y = 1.4 
It will be convenient henceforth to use the value y = 1.4 appropriate 

to a diatomic gas. Equation (20) may then be integrated in terms of 
elliptic functions, and clearly the results may be similarly developed for 
more general y. Those for y = 5 and 2 are given in the Appendix. 

When y = 1.4 we have 

$=Q, m = 1  2 ,  = 5(9)1'2, (21) 
and the surface xl'ay = 1 which marks the boundary of the perturbed 
region becomes xyl/, = 1. When 6, = 0 it is clear from equation (20) 
that 4 and hencef, is zero for xyli2 2 Q .  Thus there is a second surface, 
xy1/2 = Q, inside the first, which marks the limit of the perturbation due to 
the displacement 6,. 

The equations of the two boundaries in the physical plane are (-$ +5)(1-K($ +5)')1:'= d24--, Y 
co t 

where K = 6-' for the outer boundary, K = 5-' for the inner boundary. 
They are both characteristics of the original hyperbolic equation (9) and 
in 5 6 arguments are put forward which suggest that in some circumstances 
these boundaries take the form of weak shocks. 
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Both boundaries are similar in shape and expand uniformly about the 
corner. The tail of the rarefaction wave ( X  = - Sc, t ) ,  the wall, and the 
two boundaries meet in a point which is the furthest penetration downstream 
of the disturbances. At this point the gradients of the two boundaries are 
identical and 

The upstream extremities of the inner and outer boundaries are 
respectively the corner X = Y = 0, and the intersection of the wall and the 
head of the rarefaction wave X = cot ,  Y = 0. In each case the boundary 
is perpendicular to the wall. The shape of the curves is given in figure 2. 

Y 

/ / *  
Corner Head of 

O 

Rarefact ion Wave Rarefaction Wave 

Figure 2. The shape of the two independent regions of perturbed flow. 

4. THE VELOCITY AND PRESSURE FIELDS AT THE WALL SURFACE 

For y = 1.4, equation (20) may be integrated to give 

where cn-l is the inverse function corresponding to the jacobian elliptic 
function cn of modulus 442. It may be expressed alternatively in the 
form 

(25) 
1 dx 

F(c0s-1 x), i. (1 - X4)1/2 = 
cn-'x = 42 

where F ( c o ~ - ~ x )  is the elliptic integral of the first kind of amplitude cos-lx 
and modulus 4d2.  

The potential throughout the perturbed region is given by an integration 
of equation (24); however, the pressure and velocity fields at the wall 
surface may be obtained otherwise. The normal component of the 
perturbation velocity aq5/aY is given explicitly by equation (11). The 
tangential component +/ax is obtained from equations (7) and (8). Thus 
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or alternatively (since f satisfies equation (9)) in terms off,, 

- & / + x [ l  ++(I - Y 2 ) 1 . f d  dY. (27) ax = 6Y 
'The integrand is given immediately by equation (24). Furthermore the 
only contribution to atp/aX at y = 1 is due to the value of the integrand 
in the neighbourhood of y = 1. Thus, at y = 1, 

There is a singularity in the tangential velocity component at the corner 
where 

As x + 0 or S --f - 5co t ,  the perturbation velocity components tend 
to the finite non-zero limits, 

giving a first-order velocity discontinuity across the boundary of the per- 
turbed region at the tail of the wave. 

To the present order of approximation the flow is isentropic and the 
pressure field is determined explicitly by the change in sound speed. 
Denote the pressures in the perturbed and unperturbed rarefaction wave 
by p 2  and p ,  respectively. Let the speed 
of sound in the disturbed region of the rarefaction wave be c,+Ac. Then 

Then p ,  = p ,  when 6, = 6, = 0. 

The increase in sound speed Ac is obtained from Bernoulli's equation. 
Chester (1954) has shown that, in terms of the perturbation potential 4, 

By a transformation into the (x, y)-plane this gives 

with f, given by equation (24). Consequently the increase in sound speed 
is determined on y = 1 by the behaviour of the integrand at y = 1. From 
equation (30) the pressure distribution at the wall surface is 

1 4 .  1 - E6 (6. [ - __ cn-1 x +  - cos-1 x2 + 
Pl 3%- 5 d2 2x 

- 

4 6x 1 
+a1H(g-x) - -cn-l - + - cos-l [ 5212 5 2x 
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The pressure is singular on the downstream side of the corner where 

Both p ,  and p ,  remain finite and approach zero as x + 0 but the non- 

Values of (p , -p , ) / (p ,S,)  and (p,-pl)/(p162) are exhibited in figure 3 
This serves to separate the 

dimensional pressure ( p ,  -p,)/p, is singular. 

for the respective cases 6, = 0, 6, = 0. 
respective contributions due to the two displacements 6, and 6,. 
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Figure 3. The pressure distribution at the wall surface. (a) (pz -p I ) / (p l  &) for the 

case = 0. (6) ( p z - p l ) / ( p l  &) for the case & = 0. 

5.  THE SONIC LINE 

In the absence of perturbation, the fluid reaches sonic speed on the 
plane X = 0 where u, = - c1 = - 5co/6.  The perturbed region due to the 
displacement 6, lies entirely downstream of this plane. Consequently, 
such a displacement does not alter the position of the sonic line (this is not 
strictly correct near the corner; in $ 6  it is shown that a concave corner 
causes small disturbances to propagate upstream). Thus we may take 
6, = 0 with no loss of generality. 

In  the perturbed region the sonic line is given by the equation 
2 

( ~ , + A C ) ~  = (ul+ !&r+(g) . 
By a substitution from equations (1) and (2) for u1 and cl, this becomes 

X a+ - + A c +  ax = 0, t (35) 

correct to the first order, where Ac and i3#/aX are to be evaluated on ,'ri = 0. 
Equations (27) and (32) give the sonic line as 

x (y2 - I),/, P , 2 5  

f, dY. - -  - 
co t 6Y I 

Hence by a substitution from equation (24) for f,, 
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where y is such that 

(38) 
Y 546 (y2  - l)li2 

cot - 12 y 
The shape of the sonic line is given in figure 4, which shows that for 

6 ,  > 0 the sonic line is moved downstream. The gradient of the sonic 
line is everywhere continuous and it reaches its maximum displacement 
from the plane X = 0 when it meets the wall at the point 

Figure 4. The shape of the sonic line in the perturbed region for the case 6, = 0. 

6. THE NATURE OF THE BOUNDARIES OF THE PERTURBED REGIONS 

The above theory predicts singularities in the pressure and velocity 
fields at the corner and the head and tail of the rarefaction wave. These 
are just those points in which the boundaries xy1l2 = 8, xy1/2 = 1,  meet 
the wall surface. In  the following paragraphs the behaviour at each of the 
three singular points is discussed briefly and suggestions are made with 
regard to the behaviour along the remainder of the boundaries. 

At the tail of the wave x = 0 or X = - 5c, t ,  the linear theory gives 
discontinuities in the perturbation velocity of amount 

There is also a singularity in the perturbation pressure where by (33), 

P 2 - P l  --- 354% (6 ,+6 , )  as X - t  --cot. 
P l  12c, (39) 

These values satisfy the conditions for a weak shock or rarefaction wave 
which to the first order lies along the line 2d6Y = X+5c,t (both 
boundaries approximate to this line near the point X = - 5c, t ) .  The gas 
flows through the shock turning through an angle 6 , + 6 , .  Hence the 
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pressure change takes the form of a weak shock for 6 , + S ,  > 0, and a 
Prandtl-Meyer expansion for 6, + 6, < 0. 

With the linear theory there is a singularity in the pressure at the corner 
for 6, # 0 (see equation (34)). A more accurate picture is obtained from 
solving the full non-linear equations of motion by a series expansion in 
terms of the distance from the corner. Thus, it may be shown that for 
6, < 0 the flow in the neighbourhood of the corner is given by a Prandtl- 
Meyer fan of the sonic type. The flow upstream of the fan is undisturbed 
and the pressure change through the fan is O(6:'"). However, for 6 ,  > 0 
no solution can be obtained by a power series of the above form. The 
author has shown (Powell 1956, p. 90) that in this case the flow at the corner 
is just subsonic and disturbances are propagated upstream to a point whose 
distance from the corner is O(6~~'). The pressure change at the wall surface 
is continuous and is O(6;'") but away from the wall it develops into a shock 
wave. 

The circumstances at the head of the wave are different. On the linear 
theory the pressure behaves as 

(1 - x)l/,, as x --f 1, P , - P ,  7 4 3 2  
P l  37r 

N- 

with singularities in the pressure derivatives. In a small region near the 
head of the wave the full equations of motion may be solved by a series 
expansion. A solution exists for 6, < 0 in which the flow accelerates 
continuously from rest to a value which is O(6;). When 6, > 0 disturbances 
are propagated ahead of the head of the wave X = co t .  They travel into 
gas at rest in which the speed of sound is co. Hence they take the form of 
a shock wave which may be shown to have a strength O(6;). 

We have shown that the extremities of the inner boundary xy112 = 1 
are marked by shocks for 6, > 0 and expansion regions for 6, < 0. This 
would suggest that the shocks or expansions are continued around the 
entire boundary although perhaps in a diminished form. This is sub- 
stantiated by an examination of the normal pressure derivative at the 
boundary. For a class of problems in cone-field theory, Lighthill (1949 b) 
has shown that the boundary of a perturbed region is a first approximation 
to a shock wave when the normal pressure derivative is singular and positive, 
and to a rarefaction wave otherwise. With certain assumptions, the author 
has indicated (Powell 1956) how Lighthill's proof may be extended to 
cover the present case. In  this, there is a shock along the inner boundary 
for 6 ,  > 0 and an expansion region for 6 ,  < 0 with similar behaviour 
at the outer boundary for 6 ,  > 0 and 6 ,  < 0, respectively. However, 
the strengths of the two shocks differ. The shock at the inner boundary 
is of strength O(8i/3) increasing to O(Sgd) in the neighbourhood of the 
corner, whereas the shock at the outer boundary is O(6:) increasing to 
O(6;) at the head of the wave. 

It is interesting to compare these results with the analogous problem 
of the diffraction of a shock wave by a corner (Lighthill 1949 a ;  Tan 1951). 
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In  general, the boundary of the perturbed region behind the incident shock 
itself represents a shock wave or rarefaction wave whose strength is O(P).  
But when the flow behind the incident shock is just sonic, the boundary 
remains attached to the corner and is locally of strength O(S2I3) decreasing 
to O(S2) on the remainder of the boundary. Thus both the present problem 
and that of Lighthill are similar in the respect that they possess perturbed 
regions which are bounded by a shock wave or rarefaction wave whose 
strengths are respectively O(6?i3) and O(S2I3) at the corner. However, the 
analysis of the present section suggests that their strengths differ on the 
remainder of the boundary, being O(S2) in Lighthill’s case and O(S:’9) 
in the present case. This difference can to some extent be explained by the 
nature of the characteristic lines in the two problems. In Lighthill’s problem 
the general equation of motion is elliptic inside the perturbed region and 
hyperbolic outside so that in the neighbourhood of the corner only one 
characteristic is generated which is continued around the entire boundary 
of the perturbed region. In the present problem, the equation of motion 
is hyperbolic everywhere (with the exception of a small region near the 
corner) and all characteristics generated near the corner are continued 
around the boundary of the perturbed region. It is reasonable to suppose 
that in the latter case a shock whose strength is of a higher order will be 
propagated around the boundary. 

7 .  CONCLUSION 

In  practice, it is impossible to obtain a perfect vacuum behind the 
membrane and shock-tube experiments are usually performed with the 
pressure difference across the membrane obtained by a high compression 
of the gas on one side. The resulting flow differs from the complete 
rarefaction wave. When the membrane fractures, a shock wave travels 
down the tube into the region of rarefaction followed by a region of steady 
flow. An incomplete rarefaction wave spreads upstream also followed by 
a region of uniform flow and the two regions of uniform flow are separated 
by a contact discontinuity which moves downstream with the same velocity 
as the fluid (e.g. Holder 1953). 

Clearly in the above case, the region of perturbation will extend not 
only through the rarefaction wave but also into the regions of steady flow 
between the rarefaction wave and the shock wave. However, the solution 
obtained in the previous sections will still hold in the rarefaction wave 
since equation (8) is hyperbolic and the flow is determined by conditions 
on the wall alone. 

For the resulting rarefaction wave to be near enough to completeness 
to extend as far downstream as (X/c ,  t )  = - 4-5 requires an initial pressure 
ratio of thirty million. This is impracticable, but pressure ratios of lo4 
have been obtained and in this case the wave extends downstream to about 
(X/co t )  = - 3, i.e. two-thirds of the complete rarefaction wave are present. 
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APPENDIX 
( a )  y =: 

Gases other than air are commonly used in the shock-tube. For example, 
argon may be used on the low pressure side of the membrane with hydrogen 
on the high pressure side. The rarefaction wave will always occur in the 
gas which originally occupies the high pressure region; thus in the above 
example the previous results will still hold since hydrogen is a diatomic gas. 

For monatomic gases such as helium and argon we may approximate 
to  y = 5/3. I n  this case equation (20) may be integrated in terms of 
elementary functions. Thus the perturbed region is bounded by the curve 

($+3){1- -(- 1 x  +3)l ju2=22i2- ,  Y 

k2 cot  CO t 
where k = 4 for 6, # 0, k = 3 for 6, = 0. The boundary extends from 
X = cot to X = - 3c0 t and apart from a contraction in the X-direction 
it resembles in general shape the boundary of $4. 

The perturbation velocity along the wall surface is given by 

- e0 {6,[2x cosh-l( 1 /x) - COS-~ X] + a s  - 277 

and the pressure distribution by 

Results for y = 2 are useful for a comparison with hydraulic theory by 
the so-called hydraulic analogy. In this, the two-dimensional flow of a 
compressible gas is compared with the flow of water through a channel 
(e.g. Black & Mediratta 1951). 

In  this case the boundary of perturbation is given by 
($+2){ 1 - ; ( g  +2)}1’2 = d 3 q t ,  Y 

where k = 3 for 6, # 0, k = 2 for 6, = 0. 
distribution is 

The perturbation velocity 

ax- 3n I 
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and the pressure distribution is given by 
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